• 首 页
  • 分院概况
    • 分院简介
    • 机构设置
    • 现任领导
    • 历任领导
    • 历史沿革
  • 科教机构
    • 研究单位
    • 转制企业
    • 国科大学院
  • 党群园地
    • 组织机构
      • 党组织
      • 纪检组织
      • 工会组织
      • 团委机构
    • 党建动态
    • 反腐倡廉
    • 学习园地
    • 弘扬科学家精神
  • 人事人才
    • 院士
    • 高层次人才
    • 西部之光
    • 青促会
    • 工作动态
  • 科技合作
    • 合作概况
    • 院地合作
    • 科研进展
  • 科学传播
    • 科普文章
    • 科普动态
    • 科普基地
    • 学术期刊
  • 信息公开
    • 公开规定
    • 公开指南
    • 公开目录
    • 公开年度报告
    • 公开申请
  • 综合新闻
  • 通知公告
  • 视频新闻
  • 园区风貌
  • 媒体扫描
  • 重点平台
  • 专题
中国科学院| English| 继续教育
  • 首页
  • 分院概况
    分院简介
    成都分院前身系1958年11月成立的中科院四川分院,1962年调整更名为中科院西南分院,1970年由四川省管理,1978年1月恢复重建后使用现名,是西南地区综合性的科学研究基地、高级人才培养基地和高新技术产业化基地。
    更多简介+
    现任领导
    王嘉图
    分党组书记
    院长
    曲建升
    分党组副书记
    系统党委副书记
    刘庆
    副院长
    分党组成员
    蔡长江
    纪检组组长
    系统党委副书记
    机构设置 历任领导 历史沿革
  • 分院概况
    • 分院简介
    • 机构设置
    • 现任领导
    • 历任领导
    • 历史沿革
  • 科教机构
    研究单位
    • 光电技术研究所
    • 成都生物研究所
    • 成都山地灾害与环境
      研究所
    • 重庆绿色智能技术
      研究院
    • 成都文献情报中心
    转制企业
    成都有机化学
    有限公司
    成都信息技术股份
    有限公司
    成都中科唯实仪器
    有限责任公司
    国科大学院
    中国科学院大学
    成都学院
    中国科学院大学
    重庆学院
  • 科教机构
    • 研究单位
    • 转制企业
    • 国科大学院
  • 党群园地
    • 组织机构
      • 党组织
      • 纪检组织
      • 工会组织
      • 团委机构
    • 党建动态
    • 反腐倡廉
    • 学习园地
    • 弘扬科学家精神
  • 人事人才
    • 院士
    • 高层次人才
    • 西部之光
    • 青促会
    • 工作动态
  • 科技合作
    • 合作概况
    • 院地合作
    • 科研进展
  • 科学传播
    • 科普文章
    • 科普动态
    • 科普基地
    • 学术期刊
  • 信息公开
    • 公开规定
    • 公开指南
    • 公开目录
    • 公开年度报告
    • 公开申请
  • 头条新闻
  • 综合新闻
  • 通知公告
  • 视频新闻
  • 园区风貌
  • 媒体扫描
  • 重点平台
    • 大科学装置
    • 重点实验室
    • 工程中心
    • 野外台站
  • 专题
当前位置:
首页    综合新闻
综合新闻

成都生物所研发出基于均匀设计的神经网络方法用于微生物发酵条件的优化

发布时间:2014-07-09 来源:成都生物所 【  小 中 大  】 【打印】 【关闭】

  在微生物的发酵技术研究中,高效的发酵条件优化方法是近年来的研究热点和难点。目前,应用得较多的方法是正交试验设计法和响应面设计法,但它们需要较多的试验次数,效率较低,因此,不能广泛应用于工业发酵条件的优化上。如何减少发酵条件优化所需的实验次数,提高优化效率,成为优化方法发展的关键。在此基础上,方开泰教授提出了均匀设计方法,能显著减少试验次数,但是相应的优化精度下降。 

  中国科学院成都生物研究所谭红课题组,将计算机人工智能技术与统计学方法相结合,提出了基于均匀设计的人工神经网络优化方法,并成功应用于伊枯草菌素A的发酵条件优化,伊枯草菌素A的产量提高34.6%。研究表明,与均匀设计方法相比,在对发酵条件的优化上,人工神经网络能够建立更加精确的模型,并且具有更佳的拟合能力、预测能力和泛化能力。同时,当神经网络与遗传算法连用时,神经网络方法同样能高效地进行因素的敏感性分析,但是却比均匀设计方法具有更好的优化精度。 

  该研究提出的基于均匀设计的神经网络方法,具有较少的试验次数需求和更高的优化精度,能极大地降低发酵优化研究成本,提高效率。这是首次将该方法应用于微生物发酵条件优化研究。 

  该研究受国家支撑项目资助。 

  原文链接


附件下载:

上一篇:成都分院机关离研会课题调研文章获奖
下一篇:成都分院与成都商报联合举办小记者科普活动
版权所有:中国科学院成都分院蜀ICP备05003826号-1川公网安备 51010702001710号
单位地址:四川天府新区群贤南街100号邮编:610213
网站标识码:bm48000019