• 首 页
  • 分院概况
    • 分院简介
    • 机构设置
    • 现任领导
    • 历任领导
    • 历史沿革
  • 科教机构
    • 研究单位
    • 转制企业
    • 国科大学院
  • 党群园地
    • 组织机构
      • 党组织
      • 纪检组织
      • 工会组织
      • 团委机构
    • 党建动态
    • 反腐倡廉
    • 学习园地
    • 弘扬科学家精神
  • 人事人才
    • 院士
    • 高层次人才
    • 西部之光
    • 青促会
    • 工作动态
  • 科技合作
    • 合作概况
    • 院地合作
    • 科研进展
  • 科学传播
    • 科普文章
    • 科普动态
    • 科普基地
    • 学术期刊
  • 信息公开
    • 公开规定
    • 公开指南
    • 公开目录
    • 公开年度报告
    • 公开申请
  • 综合新闻
  • 通知公告
  • 视频新闻
  • 园区风貌
  • 媒体扫描
  • 重点平台
  • 专题
中国科学院| English| 继续教育
  • 首页
  • 分院概况
    分院简介
    成都分院前身系1958年11月成立的中科院四川分院,1962年调整更名为中科院西南分院,1970年由四川省管理,1978年1月恢复重建后使用现名,是西南地区综合性的科学研究基地、高级人才培养基地和高新技术产业化基地。
    更多简介+
    现任领导
    王嘉图
    分党组书记
    院长
    曲建升
    分党组副书记
    系统党委副书记
    刘庆
    副院长
    分党组成员
    蔡长江
    纪检组组长
    系统党委副书记
    机构设置 历任领导 历史沿革
  • 分院概况
    • 分院简介
    • 机构设置
    • 现任领导
    • 历任领导
    • 历史沿革
  • 科教机构
    研究单位
    • 光电技术研究所
    • 成都生物研究所
    • 成都山地灾害与环境
      研究所
    • 重庆绿色智能技术
      研究院
    • 成都文献情报中心
    转制企业
    成都有机化学
    有限公司
    成都信息技术股份
    有限公司
    成都中科唯实仪器
    有限责任公司
    国科大学院
    中国科学院大学
    成都学院
    中国科学院大学
    重庆学院
  • 科教机构
    • 研究单位
    • 转制企业
    • 国科大学院
  • 党群园地
    • 组织机构
      • 党组织
      • 纪检组织
      • 工会组织
      • 团委机构
    • 党建动态
    • 反腐倡廉
    • 学习园地
    • 弘扬科学家精神
  • 人事人才
    • 院士
    • 高层次人才
    • 西部之光
    • 青促会
    • 工作动态
  • 科技合作
    • 合作概况
    • 院地合作
    • 科研进展
  • 科学传播
    • 科普文章
    • 科普动态
    • 科普基地
    • 学术期刊
  • 信息公开
    • 公开规定
    • 公开指南
    • 公开目录
    • 公开年度报告
    • 公开申请
  • 头条新闻
  • 综合新闻
  • 通知公告
  • 视频新闻
  • 园区风貌
  • 媒体扫描
  • 重点平台
    • 大科学装置
    • 重点实验室
    • 工程中心
    • 野外台站
  • 专题
当前位置:
首页    科技合作    科研进展
科研进展

成都山地所在无资料区径流与洪水预报研究方面取得重要进展

发布时间:2024-04-29 来源:成都山地所 【  小 中 大  】 【打印】 【关闭】

全球95%以上的中小流域没有任何监测数据,这些无资料地区径流和洪水预测(PUB: Prediction on Ungauged Basins)一直是水文领域长期面临的科学难题。近期,成都山地所欧阳朝军研究员团队提出了一种新的基于AI的径流洪水预测模型ED-DLSTM,通过编码流域静态属性和气象驱动,利用全球2000多个水文站数据进行模型训练,以解决全球范围内有资料流域和无资料流域径流预测问题。

该研究提出的ED-DLSTM模型,针对流域径流预测目标,设计了空间属性编码模块,利用卷积层和空间金字塔池化层,将所有流域的静态属性映射到规模相同的隐空间,使得模型能抽象地“意识”到不同流域的水文响应特征。

该研究采用的训练数据集来自美国、英国、中欧、加拿大等地共计2089个流域,这些流域分布差异性显著,确保了数据的多样性。利用这些流域历史资料训练模型,并测试模型在未来时段的预测准确性和可靠性。利用纳什效率系数NSE对实验结果进行评估,发现81.8%的流域平均NSE高于0.6,预测精度比传统水文模型和其他人工智能模型更好。

基于上述预训练模型(北半球),研究者对智利(南半球)的160个全新流域(不使用任何监测数据)进行预测,以检验模型在无监测数据流域的预测能力,不同预训练模型的预测结果显现出了较强的空间分布一致性。在最好情况下,所有未计量流域中76.9%的流域NSE>0,展现了AI在未计量流域进行水径流及洪水预测的巨大潜力。

相关成果以“Deep Learning for Cross-Region Streamflow and Flood Forecasting at a Global Scale”为题,在线发表于综合性学术期刊The Innovation(IF=33.1)上。

文章信息:

Zhang B.,Ouyang C.,Cui P.,et al. (2024). Deep Learning for Cross-Region Streamflow and Flood Forecasting at a Global Scale. The Innovation 5(3),100617.

全文链接


研究摘要

研究设计的ED-DLSTM模型总览


附件下载:

上一篇:重庆研究院在结构信息未知冗余机器人控制的研究中取得进展
下一篇:重庆研究院在多视角三维人体姿态估计研究中取得进展
版权所有:中国科学院成都分院蜀ICP备05003826号-1川公网安备 51010702001710号
单位地址:四川天府新区群贤南街100号邮编:610213
网站标识码:bm48000019